Abstract
AbstractWe study the Mumford–Tate conjecture for hyperkähler varieties. We show that the full conjecture holds for all varieties deformation equivalent to either an Hilbert scheme of points on a K3 surface or to O’Grady’s ten dimensional example, and all of their self-products. For an arbitrary hyperkähler variety whose second Betti number is not 3, we prove the Mumford–Tate conjecture in every codimension under the assumption that the Künneth components in even degree of its André motive are abelian. Our results extend a theorem of André.
Funder
Gottfried Wilhelm Leibniz Universität Hannover
Publisher
Springer Science and Business Media LLC
Reference21 articles.
1. André, Y.: On the Shafarevich and Tate conjectures for hyperkähler varieties. Mathematische Annalen 305(1), 205–248 (1996)
2. André, Y.: Pour une théorie inconditionnelle des motifs. Publications Mathématiques de l-Institut des Hautes Études Scientifiques 83(1), 5–49 (1996)
3. Beauville, A.: Variétés Kähleriennes dont la premiere classe de Chern est nulle. J. Differ. Geom. 18(4), 755–782 (1983)
4. Beauville, A.: Holomorphic symplectic geometry: a problem list. In: Complex and differential geometry, Springer Proc. Math., vol. 8, Springer, , p. 49–63 (2011)
5. de Cataldo, M. A., Rapagnetta, A., Saccà, G.: The Hodge numbers of O’Grady 10 via Ngô strings. arXiv:1905.03217 (2019)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献