Abstract
AbstractIn this paper, we study variational solutions to parabolic equations of the type $$\partial _t u - \mathrm {div}_x (D_\xi f(Du)) + D_ug(x,u) = 0$$
∂
t
u
-
div
x
(
D
ξ
f
(
D
u
)
)
+
D
u
g
(
x
,
u
)
=
0
, where u attains time-independent boundary values $$u_0$$
u
0
on the parabolic boundary and f, g fulfill convexity assumptions. We establish a Haar-Rado type theorem: If the boundary values $$u_0$$
u
0
admit a modulus of continuity $$\omega $$
ω
and the estimate $$|u(x,t)-u_0(\gamma )| \le \omega (|x-\gamma |)$$
|
u
(
x
,
t
)
-
u
0
(
γ
)
|
≤
ω
(
|
x
-
γ
|
)
holds, then u admits the same modulus of continuity in the spatial variable.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献