Abstract
AbstractLet $$\Omega $$
Ω
be a domain on the unit n-sphere $$ {\mathbb {S}}^n$$
S
n
and $$ \overset{{\,}_\circ }{g}$$
g
∘
the standard metric of $${\mathbb {S}}^n$$
S
n
, $$n\ge 3$$
n
≥
3
. We show that there exists a conformal metric g with vanishing scalar curvature $$R(g)=0$$
R
(
g
)
=
0
such that $$(\Omega , g)$$
(
Ω
,
g
)
is complete if and only if the Bessel capacity $${\mathcal {C}}_{\alpha , q}({\mathbb {S}}^n\setminus \Omega )=0$$
C
α
,
q
(
S
n
\
Ω
)
=
0
, where $$\alpha =1+\frac{2}{n}$$
α
=
1
+
2
n
and $$q=\frac{n}{2}$$
q
=
n
2
. Our analysis utilizes some well known properties of capacity and Wolff potentials, as well as a version of the Hopf–Rinow theorem for the divergent curves.
Publisher
Springer Science and Business Media LLC
Reference21 articles.
1. Armitage, D.H., Gardiner, S.J.: Classical potential theory, Springer Monographs in Mathematics, Springer, London (2001)
2. Aubin, T.: Équations différentielles non linéaires et probl‘eme de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. 55(3), 269–296 (1976)
3. Bettiol, R.G., Piccione, P., Santoro, B.: Bifurcation of periodic solutions to the singular Yamabe problem on spheres. J. Differ. Geom. 103(2), 191–205 (2016)
4. Delanoë, P.: Generalized stereographic projections with prescribed scalar curvature, Geometry and nonlinear partial differential equations (Fayetteville, AR, 1990). Contemp. Math., vol. 127, Amer. Math. Soc., Providence, RI (1992) pp. 17–25. https://doi.org/10.1090/conm/127/1155406
5. Do Carmo, M. P., Flaherty Francis, J.: Riemannian Geometry (Vol. 6). Birkhäuser, Boston (1992)