Abstract
AbstractLet $${\mathfrak g}$$
g
be a reductive Lie algebra and $$\mathfrak t\subset \mathfrak g$$
t
⊂
g
a Cartan subalgebra. The $$\mathfrak t$$
t
-stable decomposition $${\mathfrak g}=\mathfrak t\oplus {\mathfrak m}$$
g
=
t
⊕
m
yields a bi-grading of the symmetric algebra $${\mathcal {S}}({\mathfrak g})$$
S
(
g
)
. The subalgebra $${\mathcal {Z}}_{({\mathfrak g},\mathfrak t)}$$
Z
(
g
,
t
)
generated by the bi-homogenous components of the symmetric invariants $$F\in {\mathcal {S}}({\mathfrak g})^{\mathfrak g}$$
F
∈
S
(
g
)
g
is known to be Poisson commutative. Furthermore the algebra $${\tilde{{\mathcal {Z}}}}=\textsf{alg}\langle {\mathcal {Z}}_{({\mathfrak g},{\mathfrak t})},{\mathfrak t}\rangle $$
Z
~
=
alg
⟨
Z
(
g
,
t
)
,
t
⟩
is also Poisson commutative. We investigate relations between $${\tilde{{\mathcal {Z}}}}$$
Z
~
and Mishchenko–Fomenko subalgebras. In type , we construct a quantisation of $${\tilde{{\mathcal {Z}}}}$$
Z
~
making use of quantum Mishchenko–Fomenko algebras.
Funder
Deutsche Forschungsgemeinschaft
Friedrich-Schiller-Universität Jena
Publisher
Springer Science and Business Media LLC
Reference19 articles.
1. Borho, W., Kraft, H.: Über die Gelfand–Kirillov-Dimension. Math. Ann. 220(1), 1–24 (1976)
2. Dufour, J.-P., Zung, N.T.: Poisson structures and their normal forms. In: Progress in Mathematics, vol. 242. Birkhäuser Verlag, Basel (2005)
3. Feigin, B., Frenkel, E., Rybnikov, L.: Opers with irregular singularity and spectra of the shift of argument subalgebra. Duke Math. J. 155(2), 337–363 (2010)
4. Feigin, B., Frenkel, E., Toledano Laredo, V.: Gaudin models with irregular singularities. Adv. Math. 223, 873–948 (2010)
5. Gelfand, I.M., Zakharevich, I.S.: Webs, Lenard schemes, and the local geometry of bi-Hamiltonian Toda and Lax structures, Selecta Math. New Ser. 6, 131–183 (2000)