Abelian covers and the second fundamental form

Author:

Frediani PaolaORCID

Abstract

AbstractWe give some conditions on a family of abelian covers of $${\mathbb P}^1$$ P 1 of genus g curves, that ensure that the family yields a subvariety of $${\mathsf A}_g$$ A g which is not totally geodesic, hence it is not Shimura. As a consequence, we show that for any abelian group G, there exists an integer M which only depends on G such that if $$g >M$$ g > M , then the family yields a subvariety of $${\mathsf A}_g$$ A g which is not totally geodesic. We prove then analogous results for families of abelian covers of $${\tilde{C}}_t \rightarrow {\mathbb P}^1 = {\tilde{C}}_t/{\tilde{G}}$$ C ~ t P 1 = C ~ t / G ~ with an abelian Galois group $${\tilde{G}}$$ G ~ of even order, proving that under some conditions, if $$\sigma \in {\tilde{G}}$$ σ G ~ is an involution, the family of Pryms associated with the covers $${\tilde{C}}_t \rightarrow C_t= {\tilde{C}}_t/\langle \sigma \rangle $$ C ~ t C t = C ~ t / σ yields a subvariety of $${\mathsf A}_{p}^{\delta }$$ A p δ which is not totally geodesic. As a consequence, we show that if $${\tilde{G}}=(\mathbb Z/N\mathbb Z)^m$$ G ~ = ( Z / N Z ) m with N even, and $$\sigma $$ σ is an involution in $${\tilde{G}}$$ G ~ , there exists an integer M(N) which only depends on N such that, if $${\tilde{g}}= g({\tilde{C}}_t) > M(N)$$ g ~ = g ( C ~ t ) > M ( N ) , then the subvariety of the Prym locus in $${{\mathsf A}}^{\delta }_{p}$$ A p δ induced by any such family is not totally geodesic (hence it is not Shimura).

Funder

GNSAGA INdAM

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3