Étale cohomology of algebraizable rigid analytic varieties via nearby cycles over general bases

Author:

Kato HirokiORCID

Abstract

AbstractWe prove a finiteness theorem and a comparison theorem in the theory of étale cohomology of rigid analytic varieties. By a result of Huber, for a quasi-compact separated morphism of rigid analytic varieties with target being of dimension $$\le 1$$ 1 , the compactly supported higher direct image preserves quasi-constructibility. Though the analogous statement for morphisms with higher dimensional target fails in general, we prove that, in the algebraizable case, it holds after replacing the target with a modification. We deduce it from a known finiteness result in the theory of nearby cycles over general bases and a new comparison result, which gives an identification of the compactly supported higher direct image sheaves, up to modification of the target, in terms of nearby cycles over general bases.

Funder

H2020 European Research Council

Publisher

Springer Science and Business Media LLC

Reference22 articles.

1. Artin, M.: Morphismes acycliques, Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4 III), exposé XV, Lecture Notes in Mathematics, vol. 305. Springer-Verlag (1973)

2. Artin, M.: Théoréme de changement de base par un morphisme lisse, et applications, Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4 III), exposé XVI, Lecture Notes in Mathematics, vol. 305. Springer-Verlag (1973)

3. Deligne, P.: Cohomologie á support propre, Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4 III), exposé XVII, Lecture Notes in Mathematics, vol. 305. Springer-Verlag (1973)

4. Fujiwara, K., Kato, F.: Foundations of Rigid Geometry. I, EMS Monographs in Mathematics. European Mathematical Society (EMS), Zürich (2018). MR3752648

5. Fujiwara, K.: Theory of tubular neighborhood in étale topology. Duke Math. J. 80(1), 15–57 (1995)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3