Development of a 3D-printed nuchal translucency model: a pilot study for prenatal ultrasound training

Author:

Recker FlorianORCID,Remmersmann Laura,Jost Elena,Jimenez-Cruz Jorge,Haverkamp Nicolas,Gembruch Ulrich,Strizek Brigitte,Schäfer Valentin S.

Abstract

Abstract Background We used two 3D ultrasound volumes of fetal heads at 13 weeks to create live-size 3D-printed phantoms with a view to training or assessment of diagnostic abilities for normal and abnormal nuchal translucency measurements. The phantoms are suitable for use in a water bath, imitating a real-life exam. They were then used to study measurement accuracy and reproducibility in examiners of different skill levels. Methods Ultrasound scans of a 13 + 0-week fetus were processed using 3D Slicer software, producing a stereolithography file for 3D printing. The model, crafted in Autodesk Fusion360™, adhered to FMF guidelines for NT dimensions (NT 2.3 mm). Additionally, a model with pathologic NT was designed (NT 4.2 mm). Printing was performed via Formlabs Form 3® printer using High Temp Resin V2. The externally identical looking 3D models were embedded in water-filled condoms for ultrasound examination. Eight specialists of varying expertise levels conducted five NT measurements for each model, classifying them in physiological and abnormal models. Results Classification of the models in physiological or abnormal NT resulted in a detection rate of 100%. Average measurements for the normal NT model and the increased NT model were 2.27 mm (SD ± 0.38) and 4.165 mm (SD ± 0.51), respectively. The interrater reliability was calculated via the intraclass correlation coefficient (ICC) which yielded a result of 0.883, indicating robust agreement between the raters. Cost-effectiveness analysis demonstrated the economical nature of the 3D printing process. Discussion This study underscores the potential of 3D printed fetal models for enhancing ultrasound training through high inter-rater reliability, consistency across different expert levels, and cost-effectiveness. Limitations, including population variability and direct translation to clinical outcomes, warrant further exploration. The study contributes to ongoing discussions on integrating innovative technologies into medical education, offering a practical and economical method to acquire, refine and revise diagnostic skills in prenatal ultrasound. Future research should explore broader applications and long-term economic implications, paving the way for transformative advancements in medical training and practice.

Funder

Universitätsklinikum Bonn

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3