Finding normal modes of a loaded string with the method of Lagrange multipliers

Author:

Jung Dong-WonORCID,Han Wooyong,Kim U-RaeORCID,Lee JungilORCID,Yu ChaehyunORCID,

Abstract

AbstractWe consider the normal mode problem of a vibrating string loaded with n identical beads of equal spacing, which involves an eigenvalue problem. Unlike the conventional approach to solving this problem by considering the difference equation for the components of the eigenvector, we modify the eigenvalue equation by introducing matrix-valued Lagrange undetermined multipliers, which regularize the secular equation and make the eigenvalue equation non-singular. Then, the eigenvector can be obtained from the regularized eigenvalue equation by multiplying the indeterminate eigenvalue equation by the inverse matrix. We find that the inverse matrix is nothing but the adjugate matrix of the original matrix in the secular determinant up to the determinant of the regularized matrix in the limit that the constraint equation vanishes. The components of the adjugate matrix can be represented in simple factorized forms. Finally, one can directly read off the eigenvector from the adjugate matrix. We expect this new method to be applicable to other eigenvalue problems involving more general forms of the tridiagonal matrices that appear in classical mechanics or quantum physics.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

Reference11 articles.

1. J.B. Marion, Classical Dynamics of Particles and Systems, 2nd edn. (Academic Press, Cambridge, 1970). (see, for example)

2. A.L. Fetter, J.D. Walecka, Theoretical Mechanics of Particles and Continua (McGraw-Hill, New York, 1980). (Chapter 24)

3. R.A. Matzner, L.C. Shepley, Classical Mechanics (Prentice-Hall, New Jersey, 1991), pp. 232–239

4. P.D. Ritger, N.J. Rose, Differential Equations with Applications (McGraw-Hill, New York, 1968), pp. 367–372

5. W. Han, D.-W. Jung, J. Lee, C. Yu, J. Korean Phys. Soc. 78, 1018 (2021)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lagrange-multiplier regularization of eigenproblem for Jx;Journal of the Korean Physical Society;2021-12

2. Time-independent perturbation theory with Lagrange multipliers;Journal of the Korean Physical Society;2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3