Design-oriented study on target station for spallation neutron source at KOMAC

Author:

Lee PilsooORCID,Kang Namwoo,Jang Yongsik

Abstract

AbstractA neutron-production target system, composed of targets, moderators, reflectors, and shielding, has been conceptually designed for the future MW-class spallation neutron source based on a high-intensity proton accelerator at KOMAC. For targetry, we tentatively adopted a fixed-metal target concept; tantalum-clad tungsten plates in a water-cooled target shroud made of stainless steel. In the thermal analysis and stress calculations using ANSYS, the von Mises stress was found to exceed the yield stress of SS316L at the edges of the structure for a 500-kW proton beam on target. Relatively high stress at edges seems to be a stress concentration that could be reduced by minor design modifications. Preliminary calculation results for a conservative design of target shielding show that radiation dose after the outermost shielding could be lower than 10 $$\upmu$$ μ Sv/h in a 500-kW operation condition, implying that the design could be optimized to reduce construction costs without loss of shielding performance.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3