Inverse Scale Space Iterations for Non-Convex Variational Problems: The Continuous and Discrete Case

Author:

Bednarski DanielleORCID,Lellmann JanORCID

Abstract

AbstractNonlinear filtering approaches allow to obtain decomposition of images with respect to a non-classical notion of scale, induced by the choice of a convex, absolutely one-homogeneous regularizer. The associated inverse scale space flow can be obtained using the classical Bregman iteration with quadratic data term. We apply the Bregman iteration to lifted, i.e., higher-dimensional and convex, functionals in order to extend the scope of these approaches to functionals with arbitrary data term. We provide conditions for the subgradients of the regularizer – in the continuous and discrete setting– under which this lifted iteration reduces to the standard Bregman iteration. We show experimental results for the convex and non-convex case.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Geometry and Topology,Computer Vision and Pattern Recognition,Condensed Matter Physics,Modeling and Simulation,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3