Big in Japan: Regularizing Networks for Solving Inverse Problems

Author:

Schwab Johannes,Antholzer Stephan,Haltmeier MarkusORCID

Abstract

Abstract Deep learning and (deep) neural networks are emerging tools to address inverse problems and image reconstruction tasks. Despite outstanding performance, the mathematical analysis for solving inverse problems by neural networks is mostly missing. In this paper, we introduce and rigorously analyze families of deep regularizing neural networks (RegNets) of the form $$\mathbf {B}_\alpha + \mathbf {N}_{\theta (\alpha )} \mathbf {B}_\alpha $$Bα+Nθ(α)Bα, where $$\mathbf {B}_\alpha $$Bα is a classical regularization and the network $$\mathbf {N}_{\theta (\alpha )} \mathbf {B}_\alpha $$Nθ(α)Bα is trained to recover the missing part $${\text {Id}}_X - \mathbf {B}_\alpha $$IdX-Bα not found by the classical regularization. We show that these regularizing networks yield a convergent regularization method for solving inverse problems. Additionally, we derive convergence rates (quantitative error estimates) assuming a sufficient decay of the associated distance function. We demonstrate that our results recover existing convergence and convergence rates results for filter-based regularization methods as well as the recently introduced null space network as special cases. Numerical results are presented for a tomographic sparse data problem, which clearly demonstrate that the proposed RegNets improve classical regularization as well as the null space network.

Funder

Austrian Science Fund

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Geometry and Topology,Computer Vision and Pattern Recognition,Condensed Matter Physics,Modeling and Simulation,Statistics and Probability

Reference24 articles.

1. Adler, J., Lunz, S.: Banach Wasserstein GAN. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems, pp. 6754–6763 (2018)

2. Adler, J., Öktem, O.: Solving ill-posed inverse problems using iterative deep neural networks. Inverse Probl. 33(12), 124007 (2017)

3. Adler, J., Öktem, O.: Deep Bayesian inversion (2018). arXiv:1811.05910

4. Adler, J., Ringh, A., Öktem, O., Karlsson, J.: Learning to solve inverse problems using Wasserstein loss (2017). arXiv:1710.10898

5. Antholzer, S., Haltmeier, M., Schwab, J.: Deep learning for photoacoustic tomography from sparse data. Inverse Problems Sci. Eng. 27(7), 987–1005 (2019). https://doi.org/10.1080/17415977.2018.1518444

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neural‐network‐based regularization methods for inverse problems in imaging;GAMM-Mitteilungen;2024-07-18

2. A Multiscale Optimisation Algorithm for Shape and Material Reconstruction from a Single X-ray Image;Proceedings of the 2024 7th International Conference on Image and Graphics Processing;2024-01-19

3. Deep decomposition learning for reflectivity inversion;Geophysical Prospecting;2023-06

4. Solving Inverse Problems With Deep Neural Networks – Robustness Included?;IEEE Transactions on Pattern Analysis and Machine Intelligence;2023-01-01

5. Deep Learning Methods for Limited Data Problems in X-Ray Tomography;Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3