Bias Versus Non-Convexity in Compressed Sensing

Author:

Gerosa DanieleORCID,Carlsson Marcus,Olsson Carl

Abstract

AbstractCardinality and rank functions are ideal ways of regularizing under-determined linear systems, but optimization of the resulting formulations is made difficult since both these penalties are non-convex and discontinuous. The most common remedy is to instead use the $$\ell ^1$$ 1 - and nuclear norms. While these are convex and can therefore be reliably optimized, they suffer from a shrinking bias that degrades the solution quality in the presence of noise. This well-known drawback has given rise to a fauna of non-convex alternatives, which usually features better global minima at the price of maybe getting stuck in undesired local minima. We focus in particular penalties based on the quadratic envelope, which have been shown to have global minima which even coincide with the “oracle solution,” i.e., there is no bias at all. So, which one do we choose, convex with a definite bias, or non-convex with no bias but less predictability? In this article, we develop a framework which allows us to interpolate between these alternatives; that is, we construct sparsity inducing penalties where the degree of non-convexity/bias can be chosen according to the specifics of the particular problem.

Funder

Lund University

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Geometry and Topology,Computer Vision and Pattern Recognition,Condensed Matter Physics,Modeling and Simulation,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3