Surface-Based Computation of the Euler Characteristic in the BCC Grid

Author:

Čomić Lidija,Magillo Paola

Abstract

AbstractAs opposed to the 3D cubic grid, the body-centered cubic (BCC) grid has some favorable topological properties: each set of voxels in the grid is a 3-manifold, with 2-manifold boundary. Thus, the Euler characteristic of an object O in this grid can be computed as half of the Euler characteristic of its boundary $$\partial O$$ O . We propose three new algorithms to compute the Euler characteristic in the BCC grid with this surface-based approach: one based on (critical point) Morse theory and two based on the discrete Gauss–Bonnet theorem. We provide a comparison between the three new algorithms and the classic approach based on counting the number of cells, either of the 3D object or of its 2D boundary surface.

Funder

Ministry of Science, Technological Development and Innovation of the Republic of Serbia

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Geometry and Topology,Computer Vision and Pattern Recognition,Condensed Matter Physics,Modeling and Simulation,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3