Temporal Huber Regularization for DCE-MRI

Author:

Hanhela MattiORCID,Kettunen Mikko,Gröhn Olli,Vauhkonen Marko,Kolehmainen Ville

Abstract

AbstractDynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is used to study microvascular structure and tissue perfusion. In DCE-MRI, a bolus of gadolinium-based contrast agent is injected into the blood stream and spatiotemporal changes induced by the contrast agent flow are estimated from a time series of MRI data. Sufficient time resolution can often only be obtained by using an imaging protocol which produces undersampled data for each image in the time series. This has lead to the popularity of compressed sensing-based image reconstruction approaches, where all the images in the time series are reconstructed simultaneously, and temporal coupling between the images is introduced into the problem by a sparsity promoting regularization functional. We propose the use of Huber penalty for temporal regularization in DCE-MRI, and compare it to total variation, total generalized variation and smoothness-based temporal regularization models. We also study the effect of spatial regularization to the reconstruction and compare the reconstruction accuracy with different temporal resolutions due to varying undersampling. The approaches are tested using simulated and experimental radial golden angle DCE-MRI data from a rat brain specimen. The results indicate that Huber regularization produces similar reconstruction accuracy with the total variation-based models, but the computation times are significantly faster.

Funder

Academy of Finland

Jane ja Aatos Erkon Säätiö

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Geometry and Topology,Computer Vision and Pattern Recognition,Condensed Matter Physics,Modeling and Simulation,Statistics and Probability

Reference49 articles.

1. Acar, R., Vogel, C.R.: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Prob. 10(6), 1217–1229 (1994)

2. Adluru, G., DiBella, E.V.R.: A comparison of L1 and L2 norms as temporal constraints for reconstruction of undersampled dynamic contrast enhanced cardiac scans with respiratory motion. Proc. Int. Soc. Magn. Reson. Med. 16, 340 (2008)

3. Adluru, G., McGann, C., Speier, P., Kholmovski, E.G., Shaaban, A., Dibella, E.V.R.: Acquisition and reconstruction of undersampled radial data for myocardial perfusion magnetic resonance imaging. J. Magn. Reson. Imaging 29(2), 466–473 (2009)

4. Adluru, G., Whitaker, R.T., DiBella, E.V.R.: Spatio-temporal constrained reconstruction of sparse dynamic contrast enhanced radial MRI data. In: IEEE International Symposium on Biomedical Imaging, pp. 109–112 (2007)

5. Averbuch, A., Coifman, R.R., Donoho, D.L., Elad, M., Israeli, M.: Fast and accurate Polar Fourier transform. In: Proceedings od IEEE IEEE International Symposium on Biomedical Imaging, pp. 109–112 (2007)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3