On the Tightness of Semidefinite Relaxations for Rotation Estimation

Author:

Brynte LucasORCID,Larsson Viktor,Iglesias José Pedro,Olsson Carl,Kahl Fredrik

Abstract

AbstractWhy is it that semidefinite relaxations have been so successful in numerous applications in computer vision and robotics for solving non-convex optimization problems involving rotations? In studying the empirical performance, we note that there are few failure cases reported in the literature, in particular for estimation problems with a single rotation, motivating us to gain further theoretical understanding. A general framework based on tools from algebraic geometry is introduced for analyzing the power of semidefinite relaxations of problems with quadratic objective functions and rotational constraints. Applications include registration, hand–eye calibration, and rotation averaging. We characterize the extreme points and show that there exist failure cases for which the relaxation is not tight, even in the case of a single rotation. We also show that some problem classes are always tight given an appropriate parametrization. Our theoretical findings are accompanied with numerical simulations, providing further evidence and understanding of the results.

Funder

Stiftelsen för Strategisk Forskning

Vetenskapsrådet

Knut och Alice Wallenbergs Stiftelse

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Geometry and Topology,Computer Vision and Pattern Recognition,Condensed Matter Physics,Modeling and Simulation,Statistics and Probability

Reference42 articles.

1. Arrigoni, F., Magri, L., Rossi, B., Fragneto, P., Fusiello, A.: Robust absolute rotation estimation via low-rank and sparse matrix decomposition. In: International Conference on 3D Vision (2014)

2. Besl, P., McKay, N.: A method for registration two 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

3. Blekherman, G., Parrilo, P., Thomas, R.: Semidefinite optimization and convex algebraic geometry. SIAM J. Opt. 10, 673–696 (2012)

4. Blekherman, G., Smith, G., Velasco, M.: Sums of squares and varieties of minimal degree. J. Am. Math. Soc. 29(3), 893–913 (2016)

5. Boumal, N.: A riemannian low-rank method for optimization over semidefinite matrices with block-diagonal constraints. arXiv preprint arXiv:1506.00575 (2015)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3