On the Reconstruction of the Center of a Projection by Distances and Incidence Relations

Author:

Pongrácz AndrásORCID,Vincze Csaba

Abstract

AbstractUp to an orientation-preserving symmetry, photographic images are produced by a central projection of a restricted area in the space into the image plane. To obtain reliable information about physical objects and the environment through the process of recording is the basic problem of photogrammetry. We present a reconstruction process based on distances from the center of projection and incidence relations among the points to be projected. For any triplet of collinear points in the space, we construct a surface of revolution containing the center of the projection. It is a generalized conic that can be represented as an algebraic surface. The rotational symmetry allows us to restrict the investigations to the defining polynomial of the profile curve in the image plane. An equivalent condition for the boundedness is given in terms of the input parameters, and it is shown that the defining polynomial of the profile curve is irreducible.

Funder

EFOP

Nemzeti Kutatási Fejlesztési és Innovációs Hivatal

Magyar Tudományos Akadémia

Emberi Eroforrások Minisztériuma

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Geometry and Topology,Computer Vision and Pattern Recognition,Condensed Matter Physics,Modelling and Simulation,Statistics and Probability

Reference17 articles.

1. Abdel-Aziz, Y.I., Karara, H.M., Hauck, M.: Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry. In: Proceedigns of the ASP Symposium on Close-Range Photogrammetry, pp. 1–18. American Society for Photogrammetry and Remote Sensing (1971)

2. Born, B., Wolfl, E.: Principles of Optics, 7th edn. Cambridge University Press, Cambridge (1999)

3. Coolidge, J.L.: A treatise on Algebraic Plane Curves. Dover Publications, New York (1959)

4. Dewitt, B.A.: Initial approximations for the three-dimensional conformal coordinate system. Photogramm. Eng. Remote Sens. 62, 79–83 (1996)

5. Gross, C., Strempel, K.G.: On generalizations of conics and on a generalization of the Fermat–Toricelli problem. Am. Math. Mon. 105, 732–743 (1998)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3