Geodesic Tracking via New Data-Driven Connections of Cartan Type for Vascular Tree Tracking
-
Published:2024-01-13
Issue:2
Volume:66
Page:198-230
-
ISSN:0924-9907
-
Container-title:Journal of Mathematical Imaging and Vision
-
language:en
-
Short-container-title:J Math Imaging Vis
Author:
van den Berg Nicky J.,Smets Bart M. N.,Pai Gautam,Mirebeau Jean-Marie,Duits Remco
Abstract
AbstractWe introduce a data-driven version of the plus Cartan connection on the homogeneous space $${\mathbb {M}}_2$$
M
2
of 2D positions and orientations. We formulate a theorem that describes all shortest and straight curves (parallel velocity and parallel momentum, respectively) with respect to this new data-driven connection and corresponding Riemannian manifold. Then we use these shortest curves for geodesic tracking of complex vasculature in multi-orientation image representations defined on $${\mathbb {M}}_{2}$$
M
2
. The data-driven Cartan connection characterizes the Hamiltonian flow of all geodesics. It also allows for improved adaptation to curvature and misalignment of the (lifted) vessel structure that we track via globally optimal geodesics. We compute these geodesics numerically via steepest descent on distance maps on $${\mathbb {M}}_2$$
M
2
that we compute by a new modified anisotropic fast-marching method.Our experiments range from tracking single blood vessels with fixed endpoints to tracking complete vascular trees in retinal images. Single vessel tracking is performed in a single run in the multi-orientation image representation, where we project the resulting geodesics back onto the underlying image. The complete vascular tree tracking requires only two runs and avoids prior segmentation, placement of extra anchor points, and dynamic switching between geodesic models. Altogether we provide a geodesic tracking method using a single, flexible, transparent, data-driven geodesic model providing globally optimal curves which correctly follow highly complex vascular structures in retinal images. All experiments in this article can be reproduced via documented Mathematica notebooks available at van den Berg (Data-driven left-invariant tracking in Mathematica, 2022).
Funder
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Publisher
Springer Science and Business Media LLC
Reference71 articles.
1. Bekkers, E.: Retinal Image Analysis Using Sub-Riemannian Geometry in SE(2). PhD thesis, TU Eindhoven (2017) 2. Weiler, D.L., Engelke, C.B., Moore, A.L., Harrison, W.W.: Arteriole tortuosity associated with diabetic retinopathy and cholesterol. Optom. Vis. Sci. 92(3), 384–391 (2015) 3. Sasongko, M.B., Wong, T.Y., Nguyen, T.T., Cheung, C.Y., Shaw, J.E., Kawasaki, R., Lamoureux, E.L., Wang, J.J.: Retinal vessel tortuosity and its relation to traditional and novel vascular risk markers in persons with diabetes. Curr. Eye Res. 41(4), 551–557 (2016) 4. Colligris, P., Perez de Lara, M.J., Colligris, B., Pintor, J.: Ocular manifestations of Alzheimer’s and other neurodegenerative diseases: the prospect of the eye as a tool for the early diagnosis of Alzheimer’s disease. J. Ophthalmol. (2018) 5. Bekkers, E.J., Zhang, J., Duits, R., ter Haar Romeny, B.M.: Curvature based biomarkers for diabetic retinopathy via exponential curve fits in SE(2). In: Proceedings of the Ophthalmic Medical Image Analysis Second International Workshop, OMIA, pp. 113–120 (2015)
|
|