Author:
Lewiner Thomas,Craizer Marcos
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Geometry and Topology,Computer Vision and Pattern Recognition,Condensed Matter Physics,Modeling and Simulation,Statistics and Probability
Reference18 articles.
1. Boutin, M.: Numerically invariant signature curves. Int. J. Comput. Vis. 40(3), 235–248 (2000)
2. Boutin, M.: On invariants of Lie groups and their application to some equivalence problems. PhD thesis, University of Minnesota (2001)
3. Calabi, E., Olver, P.J., Shakiban, C., Tannenbaum, A., Hacker, S.: Differential and numerically invariant signature curves applied to object recognition. Int. J. Comput. Vis. 26(2), 107–135 (1998)
4. Calabi, E., Olver, P.J., Tannenbaum, A.: Affine geometry, curve flows, and invariant numerical approximations. Adv. Math. 124, 154–196 (1997)
5. Craizer, M., Lewiner, T., Morvan, J.M.: Parabolic polygons and discrete affine geometry. In: Sibgrapi, pp. 11–18. IEEE, New York (2006)