Provably Scale-Covariant Continuous Hierarchical Networks Based on Scale-Normalized Differential Expressions Coupled in Cascade

Author:

Lindeberg TonyORCID

Abstract

Abstract This article presents a theory for constructing hierarchical networks in such a way that the networks are guaranteed to be provably scale covariant. We first present a general sufficiency argument for obtaining scale covariance, which holds for a wide class of networks defined from linear and nonlinear differential expressions expressed in terms of scale-normalized scale-space derivatives. Then, we present a more detailed development of one example of such a network constructed from a combination of mathematically derived models of receptive fields and biologically inspired computations. Based on a functional model of complex cells in terms of an oriented quasi quadrature combination of first- and second-order directional Gaussian derivatives, we couple such primitive computations in cascade over combinatorial expansions over image orientations. Scale-space properties of the computational primitives are analysed, and we give explicit proofs of how the resulting representation allows for scale and rotation covariance. A prototype application to texture analysis is developed, and it is demonstrated that a simplified mean-reduced representation of the resulting QuasiQuadNet leads to promising experimental results on three texture datasets.

Funder

Vetenskapsrådet

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Geometry and Topology,Computer Vision and Pattern Recognition,Condensed Matter Physics,Modeling and Simulation,Statistics and Probability

Reference158 articles.

1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

2. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (ICLR 2015) (2015). arXiv:1409.1556

3. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

4. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of Computer Vision and Pattern Recognition (CVPR 2015), pp. 1–9 (2015)

5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of Computer Vision and Pattern Recognition (CVPR 2016), pp. 770–778 (2016)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3