On the Generalized Essential Matrix Correction: An Efficient Solution to the Problem and Its Applications

Author:

Miraldo PedroORCID,Cardoso João R.ORCID

Abstract

AbstractThis paper addresses the problem of finding the closest generalized essential matrix from a given $$6\times 6$$ 6 × 6 matrix, with respect to the Frobenius norm. To the best of our knowledge, this nonlinear constrained optimization problem has not been addressed in the literature yet. Although it can be solved directly, it involves a large number of constraints, and any optimization method to solve it would require much computational effort. We start by deriving a couple of unconstrained formulations of the problem. After that, we convert the original problem into a new one, involving only orthogonal constraints, and propose an efficient algorithm of steepest descent type to find its solution. To test the algorithms, we evaluate the methods with synthetic data and conclude that the proposed steepest descent-type approach is much faster than the direct application of general optimization techniques to the original formulation with 33 constraints and to the unconstrained ones. To further motivate the relevance of our method, we apply it in two pose problems (relative and absolute) using synthetic and real data.

Funder

Royal Institute of Technology

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Geometry and Topology,Computer Vision and Pattern Recognition,Condensed Matter Physics,Modelling and Simulation,Statistics and Probability

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Localization and Navigation with Omnidirectional Images;Omnidirectional Vision;2023-12-08

2. ROTATION ONLY BUNDLE-ADJUSTMENT FOR THE GENERALIZED CAMERA MODEL AND ITS APPLICATION FOR LARGE-SCALE UNDERWATER IMAGE-SETS;ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2022-05-17

3. Solving the discrete Euler–Arnold equations for the generalized rigid body motion;Journal of Computational and Applied Mathematics;2022-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3