1. Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: Bach, F., Blei, D. (eds.) Proc. 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 2256–2265. Lille, France (2015)
2. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A.C., Bengio, Y.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Proc. 28th International Conference on Neural Information Processing Systems. Advances in Neural Information Processing Systems, vol. 27, pp. 2672–2680. Montréal, Canada (2014)
3. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proc. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, pp. 10684–10695 (2022)
4. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.S., Vaughan, J.W. (eds.) Proc. 35th International Conference on Neural Information Processing Systems. Advances in Neural Information Processing Systems, vol. 34, pp. 8780–8794 (2021)
5. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851. NeurIPS Foundation, San Diego, CA (2020)