OCTRA as ultrasonically absorptive thermal protection material for hypersonic transition suppression

Author:

Wartemann ViolaORCID,Wagner Alexander,Surujhlal Divek,Dittert Christian

Abstract

AbstractPrevious investigations in the High Enthalpy Shock Tunnel Göttingen (HEG) of the German Aerospace Center (DLR) show that carbon fiber reinforced carbon ceramic (C/C) surfaces can be utilized to damp hypersonic boundary layer instabilities resulting in a delay of boundary layer transition onset. Numerical stability analyses confirmed these experimental results. However, C/C has some disadvantages, especially the limited oxidation resistance and its low mechanical strength, which could be critical during hypersonic flights. Thus, an ultrasonically absorptive fiber reinforced ceramic material based on a silicon carbide (C/C-SiC) was developed in the past years to fulfill this need. The present paper addresses the numerical rebuilding of the C/C-SiC absorber properties using impedance boundary conditions together with linear stability analysis. The focus of this paper is on the numerical comparison of the original C/C material and the improved C/C-SiC material, referred to as OCTRA in the literature. The influence on the second modes and the transition itself is investigated. The numerical results are compared with HEG wind tunnel tests. The wind tunnel model tested in HEG is a $$7^\circ$$ 7 half-angle blunted cone with an overall model length of about $$1.1 \,\textrm{m}$$ 1.1 m and a nose tip radius of 2.5 mm. These experiments were performed at Mach 7.5 and at different freestream unit Reynolds numbers.

Funder

AFOSR

Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR)

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3