Development of ultra-high temperature ceramic matrix composites for hypersonic applications via reactive melt infiltration and mechanical testing under high temperature

Author:

Baier Luis,Frieß Martin,Hensch Nils,Leisner Vito

Abstract

AbstractIn the ongoing development of hypersonic technologies, material advancements play a key role in meeting the ever-increasing thermomechanical demands of these applications. Ultra-High Temperature Ceramic Matrix Composites (UHTCMCs) offer a promising solution for components operating under such extreme conditions. Their outstanding thermomechanical properties, including high temperature and thermal shock resistance, excellent thermal conductivity and mechanical strength, position them as ideal candidates for applications in fields like leading edges or inlet ramps for ramjets and scramjets. Due to their remarkable material composition, UHTCMCs are capable of operating in temperature regimes that surpass 1700 °C during their operation times under oxidizing atmospheres. At the German Aerospace Center (DLR), a UHTCMC material based on carbon fibres and a zirconium diboride matrix is being developed utilizing Reactive Melt Infiltration (RMI). With RMI, the orientation of the reinforcement fibres can be tailored, to enable the material to fulfill the demanding load requirements. The reactive melt infiltration process comprises three stages: preform fabrication, pyrolysis, and the actual melt infiltration. The foundation for important material properties of the final ceramic, including the matrix composition, is established in the preform production, which is a crucial step in the process. A boron- and zirconium diboride-based slurry is infiltrated into pitch-based carbon fibre fabric. Subsequently, the preforms are consolidated, pyrolysed, and infiltrated with molten Zr2Cu to obtain the UHTC matrix by in situ reaction with the preform elements. Scanning Electron Microscopy (SEM) and Energy-dispersive X-Ray Spectroscopy (EDX) enable the examination of the microstructural features, including the arrangement and distribution of zirconium diboride within the matrix. Mechanical evaluation of the UHTCMCs is conducted via 3-point bending tests at both room temperature and at elevated temperature at 900 °C. It has been demonstrated that Ultra-High Temperature Ceramic Matrix Composites can be produced by means of reactive melt infiltration, and that they retain their strength even at elevated temperatures.

Funder

Open access funding enabled and organized by Projekt DEAL

Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3