Investigation of optical laser beam impairment on hypergolic lunarlander exhaust plumes for a lidar feasibility study

Author:

Stützer Robert,Kraus Stephan,Oschwald Michael

Abstract

AbstractPlumes of two hypergolic bipropellant thrusters of a LunarLander application, developed by ArianeGroup® Lampoldshausen, were optically examined regarding their potential to interfere with laser beams of a nearby LIDAR system. On one hand, hot exhaust gas of a 22 N Vernier thruster was used to investigate the scattering of a λ = 632.8 nm HeNe laser beam. A series of several engine pulse modes were conducted. An obvious correlation between engine pulse duration and backscattered light intensity is revealed. The shortest pulses result in the most intense backscattering, indicating an incomplete combustion process between the hypergolic constituents MMH = monomethylhydrazine and NTO = (di)nitrogen tetroxide for very short pulse lengths. On the other hand, a prolonged pulse mode of 120 ms firing time causes only marginal deflection of the laser beam. Furthermore, steady operation leads to a negligible signal of backscattered photons, accompanied by increasing emission bands of combustion products such as CN, O2, and CO2. However, the disappearance of the OH* emission band, typical for this hypergolic combustion, shows a nearly complete reaction of the hydroxyl radical within the combustor for all pulse modes. Mie scattering calculations show a correlation between the incident laser beam wavelength and the backscattered light intensity. On the other hand, near infrared spectroscopy on the exhaust plume of a 500 N apogee thruster revealed that interfering flame emission and absorption in the optical range around λ = 1064 nm can be neglected. The relatively intense flame emission measured for λ ≥ 1300 nm, on the other hand, is a potential risk for the application of a laser beam of a similar wavelength.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Aerospace Engineering

Reference15 articles.

1. Kraus, S., Wolf, M., Deck, J., Dargies, E., Gotzig, U.: In: 7th Space Propulsion Conference (2012)

2. Nonnenberg, C., Frank, I., Klapötke, T.M.: Ultrafast cold reactions in the bipropellant monomethylhydrazine/nitrogen tetroxide: CPMD simulations. Angew. Chemie Int. Ed. 43, 4585–4598 (2004)

3. Catoire, L., Chaumeix, N., Paillard, C.: Chemical kinetic model for monomethylhydrazine/nitrogen tetroxide gas phase combustion and hypergolic ignition. J. Propuls. Power 20, 87–92 (2004)

4. Lecourt, R., d’Herbigny, F.-X.: MMH/NTO injection and ignition in vacuum downstream from an Aestus engine single injection element. Aerosp. Sci. Technol. 8, 207–217 (2004)

5. Rothman, L.S., Gordon, I.E., Barbe, A., Benner, D.C., Bernath, P.F., Birk, M., Boudon, V., Brown, L.R., Campargue, A., Champion, J.-P., Chance, K., Coudert, L.H., Dana, V., Devi, V.M., Fally, S., Flaud, J.-M., Gamache, R.R., Goldman, A., Jacquemart, D., Kleiner, I., Lacome, N., Lafferty, W.J., Mandin, J.-Y., Massie, S.T., Mikhailenko, S.N., Miller, C.E., Moazzen-Ahmadi, N., Naumenko, O.V., Nikitin, A.V., Orphal, J., Perevalov, V.I., Perrin, A., Predoi-Cross, A., Rinsland, C.P., Rotger, M., Šimečková, M., Smith, M.A.H., Sung, K., Tashkun, S.A., Tennyson, J., Toth, R.A., Vandaele, A.C., Vander Auwera, J., The, H.I.T.R.A.N.: molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer 110(2009), 533–572 (2008)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3