Asymptotic tracking position control with active oscillation damping of a multibody Mars vehicle using two artificial augmentation approaches

Author:

Bodmer DanielORCID,Krenmayr Michael,Holzapfel Florian

Abstract

AbstractThe Valles Marineris Explorer Cooperative Swarm navigation, Mission and Control research project aims to explore the Valles Marineris canyon system on Mars with, among others, multibody rotary-wing unmanned aerial vehicles (UAVs) comprising of a hexrotor system and a helium-filled balloon being attached to it by means of a rope. In this paper, we develop a high-fidelity closed-loop control system in MATLAB® and Simulink™ to present the application of an adequate flight controller guaranteeing (1) asymptotic tracking position control of the multibody flight system, (2) suppression of the balloon’s swinging motion in forward flight case, and (3) stabilization of the rope angle around its equilibrium for steady-state conditions. Applying feedback linearization for the outer loop and analytical backstepping for the inner loop of a nonlinear cascaded control design model of the hexrotor system, we propose an extension of the baseline flight controller by two artificial augmentation approaches to cope with the balloon dynamics. Basically, by utilizing oscillation damping feedbacks of the uncertain plant which are applied as additional commands to either the inner or the outer loop’s reference model. Simulation results are presented for an eight-shaped flight maneuver at the bottom of Valles Marineris proving that the augmentation units increase the flight controller capabilities to suppress modeling errors artificially—without changing the baseline control laws. The augmentation units actively damp the balloon motion in the forward flight case for non-steady-state conditions to counteract the rope oscillations and finally stabilize the rope angle around its equilibrium, so that the Mars vehicle is able to reach a steady-state in position when its extraterrestrial mission profile is successfully completed.

Funder

Technische Universität Hamburg

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Density Distribution in the Gaseous Envelope of the Planet;Proceedings of Petersburg Transport University;2023-03-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3