SpaceWire communications in power over ethernet environment

Author:

Martin Jack,Zaidi YaseenORCID

Abstract

AbstractThis is a high-level study into the validation of a unified electric power and communications architecture for modern spacecraft systems. We leverage from blending the European Cooperation for Space Standardisation (ECSS) SpaceWire and the IEEE 802.3 Power over Ethernet (PoE) standards for a common onboard power and communications interface. The focus of the work has been communication performance. The requirements from the protocols of both standards were analysed and combined to create a full protocol stack for SpaceWire PoE. The stack is implemented on an embedded platform represented as a proof-of-concept SpaceWire PoE system. The results of functional testing demonstrate SpaceWire PoE as a valid solution that meets the requirements of both protocols. For the 100 Mb/s links, the SpaceWire PoE throughput is on a par (97.39%) with Ethernet (97.52%) and SpaceWire (99.2%). Shared communication and power architecture is intended for decentralised operation achieving greater autonomy of the integrated subsystems. This potentially may lead to standardisation of electrical, mechanical and communication interfaces across spacecraft subsystem manufacturers, easing harness complexity and routing during the assembly, integration and test (AIT) phase of the spacecraft as well as saving mass and launch cost.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3