Space-qualified, compact and lightweight pulsed DPSS UV laser for the MOMA instrument of the ExoMars mission
-
Published:2022-08-09
Issue:2
Volume:15
Page:283-317
-
ISSN:1868-2502
-
Container-title:CEAS Space Journal
-
language:en
-
Short-container-title:CEAS Space J
Author:
Büttner AlexanderORCID, Ernst Mathias, Hunnekuhl Michael, Kalms Roland, Willemsen Lina-Ellen, Heise Jan, Ulrich Jan, Weßels Peter, Kracht Dietmar, Neumann Jörg
Abstract
AbstractA space-qualified pulsed UV laser has been developed as an irradiation source for the Mars Organic Molecule Analyser (MOMA) instrument aboard the “Rosalind Franklin” rover of the ExoMars mission (ESA/Roscosmos). MOMA will search for signatures of extinct and/or extant life on Mars. Its advanced analytical capabilities arise from the combination of a pyrolysis gas chromatograph and an ion trap-based mass spectrometer. With the addition of a compact UV laser system enabling laser desorption/ionization mass spectrometry, MOMA can detect a wide variety of both volatile and non-volatile, organic and inorganic molecules within Martian soil samples of interest. The design of the MOMA Laser Head is based on a longitudinally diode-pumped, passively Q-switched Nd:Cr:YAG oscillator generating millijoule pulses with nanosecond pulse durations at a wavelength of 1064 nm. A subsequent two-stage frequency quadrupling converts the fundamental infrared emission of the oscillator into the deep UV at 266 nm. The Laser Head emits UV pulses with a duration of about 1.5 ns and an energy tunable between 12.5 and 125 µJ for optimum adaptation to varying ionization thresholds of different molecular species. The complex but highly compact opto-mechanical design, enclosed in a hermetically sealed housing, is realized within an envelope of 200 × 56 × 45 mm3 with a total mass of less than 220 g. In this paper, we present a comprehensive summary of our development efforts towards the delivery of the LH Flight Model, which has been integrated to the MOMA instrument and finally incorporated into the ExoMars rover.
Funder
Bundesministerium für Wirtschaft und Energie Laser Zentrum Hannover e.V.
Publisher
Springer Science and Business Media LLC
Subject
Space and Planetary Science,Aerospace Engineering
Reference36 articles.
1. Vago, J.L., Gardini, B., Kminek, G., Baglioni, P., Gianfiglio, G., Santovincenzo, A., Bayon, S., Van Winnendael, M.: ExoMars-searching for life on the red planet. ESA Bull. Eur. Space Agency 126, 16–23 (2006) 2. Vago, J., Witasse, O., Svedhem, H., Baglioni, P., Haldemann, A., Gianfiglio, G., Blancquaert, T., McCoy, D., de Groot, R.: ESA ExoMars program: the next step in exploring Mars. Sol. Syst. Res. 49, 518–528 (2015). https://doi.org/10.1134/S0038094615070199 3. Korablev, O., Fedorova, A.A., Trokhimovskiy, A., et al.: No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations. Nature 568, 517–520 (2019). https://doi.org/10.1038/s41586-019-1096-4 4. Aoki, S., Vandaele, A.C., Daerden, F., et al.: Water vapor vertical profiles on Mars in dust storms observed by TGO/NOMAD. J. Geophys. Res. Planets 124, 3482–3497 (2019). https://doi.org/10.1029/2019JE006109 5. Stcherbinine, A., Vincendon, M., Montmessin, F., Wolff, M.J., Korablev, O., Fedorova, A., Trokhimovskiy, A., Patrakeev, A., Lacombe, G., Baggio, L., Shakun, A.: Martian water ice clouds during the 2018 global dust storm as observed by the ACS mid-infrared channel onboard the Trace Gas Orbiter. J. Geophys. Res. Planets 125, e2019JE006300 (2020). https://doi.org/10.1029/2019JE006300
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|