Glycosphingolipid metabolism and its role in ageing and Parkinson’s disease
-
Published:2021-11-10
Issue:
Volume:
Page:
-
ISSN:0282-0080
-
Container-title:Glycoconjugate Journal
-
language:en
-
Short-container-title:Glycoconj J
Author:
Wallom Kerri-LeeORCID, Fernández-Suárez María E.ORCID, Priestman David A.ORCID, te Vruchte DanielleORCID, Huebecker MyleneORCID, Hallett Penelope J.ORCID, Isacson OleORCID, Platt Frances M.ORCID
Abstract
AbstractIt is well established that lysosomal glucocerebrosidase gene (GBA) variants are a risk factor for Parkinson’s disease (PD), with increasing evidence suggesting a loss of function mechanism. One question raised by this genetic association is whether variants of genes involved in other aspects of sphingolipid metabolism are also associated with PD. Recent studies in sporadic PD have identified variants in multiple genes linked to diseases of glycosphingolipid (GSL) metabolism to be associated with PD. GSL biosynthesis is a complex pathway involving the coordinated action of multiple enzymes in the Golgi apparatus. GSL catabolism takes place in the lysosome and is dependent on the action of multiple acid hydrolases specific for certain substrates and glycan linkages. The finding that variants in multiple GSL catabolic genes are over-represented in PD in a heterozygous state highlights the importance of GSLs in the healthy brain and how lipid imbalances and lysosomal dysfunction are associated with normal ageing and neurodegenerative diseases. In this article we will explore the link between lysosomal storage disorders and PD, the GSL changes seen in both normal ageing, lysosomal storage disorders (LSDs) and PD and the mechanisms by which these changes can affect neurodegeneration.
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Molecular Biology,Biochemistry
Reference127 articles.
1. Gault, C.R.O.L., Hannun, Y.A.: An overview of sphingolipid metabolism: from synthesis to breakdown. Adv Exp Med Biol. 688, 1–23 (2010). https://doi.org/10.1007/978-1-4419-6741-1_1 2. Tidhar, R., Ben-Dor, S., Wang, E., Kelly, S., Merrill, A.H., Jr., Futerman, A.H.: Acyl chain specificity of ceramide synthases is determined within a region of 150 residues in the Tram-Lag-CLN8 (TLC) domain. J. Biol. Chem. 287(5), 3197–3206 (2012). https://doi.org/10.1074/jbc.M111.280271 3. Levy, M., Futerman, A.H.: Mammalian ceramide synthases. IUBMB life 62(5), 347–356 (2010). https://doi.org/10.1002/iub.319 4. D’Angelo, G., Uemura, T., Chuang, C.C., Polishchuk, E., Santoro, M., Ohvo-Rekila, H., Sato, T., Di Tullio, G., Varriale, A., D’Auria, S., Daniele, T., Capuani, F., Johannes, L., Mattjus, P., Monti, M., Pucci, P., Williams, R.L., Burke, J.E., Platt, F.M., Harada, A., De Matteis, M.A.: Vesicular and non-vesicular transport feed distinct glycosylation pathways in the Golgi. Nature 501(7465), 116–120 (2013). https://doi.org/10.1038/nature12423 5. Russo, D., Capolupo, L., Loomba, J.S., Sticco, L., D'Angelo, G.: Glycosphingolipid metabolism in cell fate specification. J Cell Sci 131(24) (2018). https://doi.org/10.1242/jcs.219204
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|