Optimized Algorithms and Hardware Implementation of Median Filter for Image Processing

Author:

Draz H. H.ORCID,Elashker N. E.,Mahmoud Mervat M. A.

Abstract

AbstractImage processing algorithms are essential for clarifying the image and improving the ability to recognize distinct characteristics of the image. The field of digital image processing is widespread in several research and technology applications. In many of these applications, the existence of impulsive noise in the obtained images is one of the most frequent problems. The median filter is a strong method to remove the impulsive noise; it effectively eliminates salt and pepper noise from the image. The main target of this paper is to investigate efficient median filter units to be connected to a general-purpose processor (GPP) for FPGA-based embedded systems. The paper exposes three novel techniques, two of them specially for median filtering techniques and the third one is used to get the maximum number of any 9 elements array. The proposed algorithms are inspired by the Median Of Median (MOM) algorithm. The first two techniques are tested for filtering $$3 \times 3$$ 3 × 3 image windows and optimized for producing the expected result in high accuracy, short time, and reduced number of comparisons. The last technique is tested for a 9 elements array for extracting the maximum number in same high efficiency manner. Furthermore, the three proposed techniques are implemented leveraging the advantage of the parallel processing and the FPGA flexible resources to satisfy the real-time processing constraints. A comparison between the first two proposed filtering units and their counterparts in the literature is included. The comparison reveals the superiority of the first technique in terms of accuracy with fewer comparators than previously published techniques. Besides, the paper illustrates how the concept beyond the proposed techniques can be used to perform the maximum pooling for convolution neural networks.

Funder

Electronics Research Institute

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3