Author:
Noorimehr Mohammad Reza,Hosseinzadeh Mehdi,Navi Keivan
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Signal Processing
Reference40 articles.
1. S. Andraros, H. Ahmad, A new efficient memory-less residue to binary converter. IEEE Trans. Circuits Syst. 35, 1441–1444 (1988)
2. J.C. Bajard, L. Imbert, Brief contributions: a full implementation RSA in RNS. IEEE Trans. Comput. 53(6), 769–774 (2004)
3. M. Bhardwaj, T. Srikanthan, C.T. Clarke, A reverse converter for the 4 moduli super set $$\{2^{n}-1, 2^{n}, 2^{n}+1, 2^{n+1}+1\}$$ { 2 n - 1 , 2 n , 2 n + 1 , 2 n + 1 + 1 } . IEEE Conference on Computer Arithmetic, 1999, pp. 168–175
4. B. Cao, C.H. Chang, T. Srikanthan, An efficient reverse converter for the 4-moduli set $$\{2^{n}-1, 2^{n}, 2^{n}+1, 2^{2n}+1\}$$ { 2 n - 1 , 2 n , 2 n + 1 , 2 2 n + 1 } based on Chinese New Remainder Theorem. IEEE Trans. Circuits Syst. I 50, 1296–1303 (2003)
5. B. Cao, C.H. Chang, T. Srikanthan, A residue to binary converter for a new five-moduli set. IEEE Trans. Circuits Syst. I 54, 1041–1049 (2007)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A New High-Speed, Low-Area Residue-to-Binary Converter For the Moduli Set $$\{ 2^{4n} ,2^{2n} + 1,2^{n} + 1,2^{n} - 1\}$$ Based on CRT-1;Circuits, Systems, and Signal Processing;2021-05-31
2. Design of Efficient Reverse Converters for Residue Number System;Journal of Circuits, Systems and Computers;2021-02-19
3. Area Efficient Memoryless Reverse Converter for New Four Moduli Set {2n−1,2n−1,2n+1,22n+1−1};Journal of Circuits, Systems and Computers;2018-02-06
4. Designing Efficient Two-Level Reverse Converters for Moduli Set
$$\{2^{2n+1}-1,2^{2n},2^{n}-1\}$$
{
2
2
n
+
1
-
1
,
2
2
n
,
2
n
-
1
};Circuits, Systems, and Signal Processing;2018-01-24