Biomedical Signal Denoising Via Permutating, Thresholding and Averaging Noise Components Obtained from Hierarchical Multiresolution Analysis-Based Empirical Mode Decomposition

Author:

Zhou Yang,Ling Bingo Wing-KuenORCID,Zhou Xueling

Abstract

AbstractBiomedical signals are usually contaminated with interfering noise, which may result in misdiagnosis of diseases. Additive white Gaussian noise (AWGN) is a common interfering noise, and much work has been proposed to suppress AWGN. Recently, hierarchical multiresolution analysis-based empirical mode decomposition (EMD) denoising method is proposed and shows potential performance. In order to further improve performance of hierarchical multiresolution analysis-based EMD denoising, this paper combines hierarchical multiresolution analysis-based EMD, thresholding operation and averaging operation together. In particular, EMD is applied to the first intrinsic mode function (IMF) in the first level of decomposition to obtain IMFs in the second level of decomposition. The first IMF in the second level of decomposition is chosen as the noise component. For each realization, this noise component is segmented into various pieces, and these segments are permutated. By summing up this permutated IMF to the rest of IMFs in both the first level of decomposition and the second level of decomposition, new realization of the noisy signal is obtained. Next, for original signal and each realization of newly generated noisy signal, EMD is performed again. IMFs in the first level of decomposition are obtained. Then, consecutive mean squared errors-based criterion is used to classify IMFs in the first level of decomposition into the information group of IMFs or the noise group of IMFs. Next, EMD is applied to IMFs in the noise group in the first level of decomposition and IMFs in the second level of decomposition are obtained. Detrended fluctuation analysis is used to classify IMFs in the second level of decomposition into the information group of IMFs or the noise group of IMFs. After that, thresholding is applied to IMFs in the noise group in the second level of the decomposition to obtain denoised signal. Finally, the above procedures are repeated, and several realizations of denoised signals are obtained. Then, denoised signal obtained by applying thresholding to each realization is averaged together to obtain final denoised signal. The extensive numerical simulations are conducted and the results show that our proposed method outperforms existing EMD-based denoising methods.

Funder

National Nature Science Foundation of China

Team Project of the Education Ministry of the Guangdong Province

Guangdong Higher Education Engineering Technology Research Center for Big Data on Manufacturing Knowledge Patent

Guangdong Province Intellectual Property Key Laboratory Project

Hong Kong Innovation and Technology Commission, Enterprise Support Scheme

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3