Funder
National Key Research and Development Project
the National Nature Science Foundation of China under Grants
Publisher
Springer Science and Business Media LLC
Reference33 articles.
1. M. Baas, H. Kamper, Stargan-zsvc: Towards zero-shot voice conversion in low-resource contexts. In: Southern African conference for artificial intelligence research, pp 69–84 (2020)
2. M. Chen, Y. Shi, T. Hain, Towards low-resource stargan voice conversion using weight adaptive instance normalization. In: ICASSP 2021-2021 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 5949–5953 (2021)
3. C. Chun, Y.H. Lee, G.W. Lee, et al., (2023) Non-parallel voice conversion using cycle-consistent adversarial networks with self-supervised representations. In: 2023 IEEE 20th consumer communications & networking conference (CCNC), pp 931–932
4. S. Ghosh, Y. Sinha, I. Siegert, et al., (2023) Improving voice conversion for dissimilar speakers using perceptual losses. Deutsche Gesellschaft für Akustik eV pp 1358–1361
5. K. He, X. Zhang, S. Ren, et al., Deep residual learning for image recognition. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 770–778 (2016)