Excavating FAIR Data: the Case of the Multicenter Animal Spinal Cord Injury Study (MASCIS), Blood Pressure, and Neuro-Recovery

Author:

Almeida Carlos A.,Torres-Espin Abel,Huie J. Russell,Sun Dongming,Noble-Haeusslein Linda J.,Young Wise,Beattie Michael S.,Bresnahan Jacqueline C.,Nielson Jessica L.,Ferguson Adam R.ORCID

Abstract

AbstractMeta-analyses suggest that the published literature represents only a small minority of the total data collected in biomedical research, with most becoming ‘dark data’ unreported in the literature. Dark data is due to publication bias toward novel results that confirm investigator hypotheses and omission of data that do not. Publication bias contributes to scientific irreproducibility and failures in bench-to-bedside translation. Sharing dark data by making it Findable, Accessible, Interoperable, and Reusable (FAIR) may reduce the burden of irreproducible science by increasing transparency and support data-driven discoveries beyond the lifecycle of the original study. We illustrate feasibility of dark data sharing by recovering original raw data from the Multicenter Animal Spinal Cord Injury Study (MASCIS), an NIH-funded multi-site preclinical drug trial conducted in the 1990s that tested efficacy of several therapies after a spinal cord injury (SCI). The original drug treatments did not produce clear positive results and MASCIS data were stored in boxes for more than two decades. The goal of the present study was to independently confirm published machine learning findings that perioperative blood pressure is a major predictor of SCI neuromotor outcome (Nielson et al., 2015). We recovered, digitized, and curated the data from 1125 rats from MASCIS. Analyses indicated that high perioperative blood pressure at the time of SCI is associated with poorer health and worse neuromotor outcomes in more severe SCI, whereas low perioperative blood pressure is associated with poorer health and worse neuromotor outcome in moderate SCI. These findings confirm and expand prior results that a narrow window of blood-pressure control optimizes outcome, and demonstrate the value of recovering dark data for assessing reproducibility of findings with implications for precision therapeutic approaches.

Funder

Wings for Life

National Institute of Neurological Disorders and Stroke

National Institutes of Health

National Institute of Mental Health

National Center for Advancing Translational Sciences

U.S. Department of Veterans Affairs

Craig H. Neilsen Foundation

Publisher

Springer Science and Business Media LLC

Subject

Information Systems,General Neuroscience,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3