Updates to the Melbourne Children’s Regional Infant Brain Software Package (M-CRIB-S)
-
Published:2024-03-16
Issue:2
Volume:22
Page:207-223
-
ISSN:1559-0089
-
Container-title:Neuroinformatics
-
language:en
-
Short-container-title:Neuroinform
Author:
Adamson Chris L.ORCID, Alexander BonnieORCID, Kelly Claire E.ORCID, Ball GarethORCID, Beare RichardORCID, Cheong Jeanie L. Y.ORCID, Spittle Alicia J.ORCID, Doyle Lex W.ORCID, Anderson Peter J.ORCID, Seal Marc L.ORCID, Thompson Deanne K.ORCID
Abstract
AbstractThe delineation of cortical areas on magnetic resonance images (MRI) is important for understanding the complexities of the developing human brain. The previous version of the Melbourne Children's Regional Infant Brain (M-CRIB-S) (Adamson et al. Scientific Reports, 10(1), 10, 2020) is a software package that performs whole-brain segmentation, cortical surface extraction and parcellation of the neonatal brain. Available cortical parcellation schemes in the M-CRIB-S are the adult-compatible 34- and 31-region per hemisphere Desikan-Killiany (DK) and Desikan-Killiany-Tourville (DKT), respectively. We present a major update to the software package which achieves two aims: 1) to make the voxel-based segmentation outputs derived from the Freesurfer-compatible M-CRIB scheme, and 2) to improve the accuracy of whole-brain segmentation and cortical surface extraction. Cortical surface extraction has been improved with additional steps to improve penetration of the inner surface into thin gyri. The improved cortical surface extraction is shown to increase the robustness of measures such as surface area, cortical thickness, and cortical volume.
Funder
University of Melbourne
Publisher
Springer Science and Business Media LLC
Reference27 articles.
1. Adamson, C. L., Alexander, B., Ball, G., Beare, R., Cheong, J. L. Y., Spittle, A. J., Doyle, L. W., Anderson, P. J., Seal, M. L., & Thompson, D. K. (2020). Parcellation of the neonatal cortex using surface-based Melbourne Children’s Regional Infant Brain atlases (M-CRIB-S). Scientific Reports, 10(1), 10. https://doi.org/10.1038/s41598-020-61326-2 2. Alexander, B., Murray, A. L., Loh, W. Y., Matthews, L. G., Adamson, C., Beare, R., Chen, J., Kelly, C. E., Rees, S., Warfield, S. K., Anderson, P. J., Doyle, L. W., Spittle, A. J., Cheong, J. L., Seal, M. L., & Thompson, D. K. (2017). A new neonatal cortical and subcortical brain atlas: The Melbourne Children’s Regional Infant Brain (M-CRIB) atlas. NeuroImage, 147, 841–851. https://doi.org/10.1016/j.neuroimage.2016.09.068 3. Alexander, B., Loh, W. Y., Matthews, L. G., Murray, A. L., Adamson, C., Beare, R., Chen, J., Kelly, C. E., Anderson, P. J., Doyle, L. W., Spittle, A. J., Cheong, J. L. Y., Seal, M. L., & Thompson, D. K. (2019). Desikan-Killiany-Tourville atlas compatible version of M-CRIB neonatal parcellated whole brain atlas: The M-CRIB 2.0. Frontiers in Neuroscience, 13, 34. https://doi.org/10.3389/fnins.2019.00034 4. Avants, B. B., Epstein, C. L., Grossman, M., & Gee, J. C. (2008). Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis, 12(1), 26–41. https://doi.org/10.1016/j.media.2007.06.004 5. Beare, R. J., Chen, J., Kelly, C. E., Alexopoulos, D., Smyser, C. D., Rogers, C. E., Loh, W. Y., Matthews, L. G., Cheong, J. L. Y., Spittle, A. J., Anderson, P. J., Doyle, L. W., Inder, T. E., Seal, M. L., & Thompson, D. K. (2016). Neonatal brain tissue classification with morphological adaptation and unified segmentation. Frontiers in Neuroinformatics, 10, 12. https://www.frontiersin.org/article/10.3389/fninf.2016.00012
|
|