Fusion of ULS Group Constrained High- and Low-Order Sparse Functional Connectivity Networks for MCI Classification
Author:
Publisher
Springer Science and Business Media LLC
Subject
Information Systems,General Neuroscience,Software
Link
http://link.springer.com/content/pdf/10.1007/s12021-019-09418-x.pdf
Reference89 articles.
1. Akhoondzadeh, M. (2016). Decision tree, bagging and random forest methods detect TEC seismo-ionospheric anomalies around the time of the Chile, (M-w=8.8) earthquake of 27 February 2010. Advances in Space Research, 57(12), 2464–2469. https://doi.org/10.1016/j.asr.2016.03.035 .
2. Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., & Calhoun, V. D. (2014). Tracking whole-brain connectivity dynamics in the resting state. Cerebral Cortex, 24(3), 663–676. https://doi.org/10.1093/cercor/bhs352 .
3. Alzheimer's Association. (2015). 2015 Alzheimer's disease facts and figures. Alzheimers & Dementia, 11(3), 332–384. https://doi.org/10.1016/j.jalz.2015.02.003 .
4. Amezquita-Sanchez, J. P., Adeli, A., & Adeli, H. (2016). A new methodology for automated diagnosis of mild cognitive impairment (MCI) using magnetoencephalography (MEG). Behavioural Brain Research, 305, 174–180. https://doi.org/10.1016/j.bbr.2016.02.035 .
5. Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140. https://doi.org/10.1023/A:1018054314350 .
Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Inferring brain causal and temporal-lag networks for recognizing abnormal patterns of dementia;Medical Image Analysis;2024-05
2. Neuroimage analysis using artificial intelligence approaches: a systematic review;Medical & Biological Engineering & Computing;2024-04-26
3. Effective hyper-connectivity network construction and learning: Application to major depressive disorder identification;Computers in Biology and Medicine;2024-03
4. Joint learning of multi-level dynamic brain networks for autism spectrum disorder diagnosis;Computers in Biology and Medicine;2024-03
5. Deep Fusion of Multi-Template Using Spatio-Temporal Weighted Multi-Hypergraph Convolutional Networks for Brain Disease Analysis;IEEE Transactions on Medical Imaging;2024-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3