Automated White Matter Hyperintensity Segmentation Using Bayesian Model Selection: Assessment and Correlations with Cognitive Change

Author:

Fiford Cassidy M.ORCID, ,Sudre Carole H.,Pemberton Hugh,Walsh Phoebe,Manning Emily,Malone Ian B.,Nicholas Jennifer,Bouvy Willem H,Carmichael Owen T.,Biessels Geert Jan,Cardoso M. Jorge,Barnes Josephine

Abstract

AbstractAccurate, automated white matter hyperintensity (WMH) segmentations are needed for large-scale studies to understand contributions of WMH to neurological diseases. We evaluated Bayesian Model Selection (BaMoS), a hierarchical fully-unsupervised model selection framework for WMH segmentation. We compared BaMoS segmentations to semi-automated segmentations, and assessed whether they predicted longitudinal cognitive change in control, early Mild Cognitive Impairment (EMCI), late Mild Cognitive Impairment (LMCI), subjective/significant memory concern (SMC) and Alzheimer’s (AD) participants. Data were downloaded from the Alzheimer’s disease Neuroimaging Initiative (ADNI). Magnetic resonance images from 30 control and 30 AD participants were selected to incorporate multiple scanners, and were semi-automatically segmented by 4 raters and BaMoS. Segmentations were assessed using volume correlation, Dice score, and other spatial metrics. Linear mixed-effect models were fitted to 180 control, 107 SMC, 320 EMCI, 171 LMCI and 151 AD participants separately in each group, with the outcomes being cognitive change (e.g. mini-mental state examination; MMSE), and BaMoS WMH, age, sex, race and education used as predictors. There was a high level of agreement between BaMoS’ WMH segmentation volumes and a consensus of rater segmentations, with a median Dice score of 0.74 and correlation coefficient of 0.96. BaMoS WMH predicted cognitive change in: control, EMCI, and SMC groups using MMSE; LMCI using clinical dementia rating scale; and EMCI using Alzheimer’s disease assessment scale-cognitive subscale (p < 0.05, all tests). BaMoS compares well to semi-automated segmentation, is robust to different WMH loads and scanners, and can generate volumes which predict decline. BaMoS can be applicable to further large-scale studies.

Funder

University College London

Publisher

Springer Science and Business Media LLC

Subject

Information Systems,General Neuroscience,Software

Reference42 articles.

1. Admiraal-Behloul, F., van den Heuvel, D. M. J., Olofsen, H., van Osch, M. J. P., van der Grond, J., van Buchem, M. A., & Reiber, J. H. C. (2005). Fully automatic segmentation of white matter hyperintensities in MR images of the elderly. NeuroImage, 28(3), 607–617. https://doi.org/10.1016/j.neuroimage.2005.06.061.

2. Anbeek, P., Vincken, K. L., Van Osch, M. J. P., Bisschops, R. H. C., & Van Der Grond, J. (2004). Probabilistic segmentation of white matter lesions in MR imaging. NeuroImage, 21(3), 1037–1044. https://doi.org/10.1016/j.neuroimage.2003.10.012.

3. Bakshi, R., Caruthers, S. D., Janardhan, V., & Wasay, M. (2000). Intraventricular CSF pulsation artifact on fast fluid-attenuated inversion-recovery MR images: Analysis of 100 consecutive normal studies. American Journal of Neuroradiology, 21(3), 503–508.

4. Barnes, J., Carmichael, O. T., Leung, K. K., Schwarz, C., Ridgway, G. R., Bartlett, J. W., Malone, I. B., Schott, J. M., Rossor, M. N., Biessels, G. J., DeCarli, C., Fox, N. C., & Alzheimer’s Disease Neuroimaging Initiative. (2013). Vascular and Alzheimer’s disease markers independently predict brain atrophy rate in Alzheimer’s Disease Neuroimaging Initiative controls. Neurobiology of Aging, 34(8), 1996–2002. https://doi.org/10.1016/j.neurobiolaging.2013.02.003.

5. Beare, R., Srikanth, V., Chen, J., Phan, T. G., Stapleton, J., Lipshut, R., & Reutens, D. (2009). Development and validation of morphological segmentation of age-related cerebral white matter hyperintensities. NeuroImage, 47(1), 199–203. https://doi.org/10.1016/j.neuroimage.2009.03.055.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3