Human Brain Atlases in Stroke Management

Author:

Nowinski Wieslaw L.

Abstract

AbstractStroke is a leading cause of death and a major cause of permanent disability. Its management is demanding because of variety of protocols, imaging modalities, pulse sequences, hemodynamic maps, criteria for treatment, and time constraints to promptly evaluate and treat. To cope with some of these issues, we propose novel, patented solutions in stroke management by employing multiple brain atlases for diagnosis, treatment, and prediction. Numerous and diverse CT and MRI scans are used: ARIC cohort, ischemic and hemorrhagic stroke CT cases, MRI cases with multiple pulse sequences, and 128 stroke CT patients, each with 170 variables and one year follow-up. The method employs brain atlases of anatomy, blood supply territories, and probabilistic stroke atlas. It rapidly maps an atlas to scan and provides atlas-assisted scan processing. Atlas-to-scan mapping is application-dependent and handles three types of regions of interest (ROIs): atlas-defined ROIs, atlas-quantified ROIs, and ROIs creating an atlas. An ROI is defined by atlas-guided anatomy or scan-derived pathology. The atlas defines ROI or quantifies it. A brain atlas potential has been illustrated in four atlas-assisted applications for stroke occurrence prediction and screening, rapid and automatic stroke diagnosis in emergency room, quantitative decision support in thrombolysis in ischemic stroke, and stroke outcome prediction and treatment assessment. The use of brain atlases in stroke has many potential advantages, including rapid processing, automated and robust handling, wide range of applications, and quantitative assessment. Further work is needed to enhance the developed prototypes, clinically validate proposed solutions, and introduce them to clinical practice.

Funder

Cardinal Stefan Wyszynski University in Warsaw

Publisher

Springer Science and Business Media LLC

Subject

Information Systems,General Neuroscience,Software

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3