1. Akhondi-Asl, A., Hoyte, L., Lockhart, M.E., & Warfield, S.K. (2014). A logarithmic opinion pool based staple algorithm for the fusion of segmentations with associated reliability weights. IEEE Transactions on Medical Imaging, 33(10), 1997–2009.
2. Anbeek, P., Vincken, K.L., van Osch, M.J.P., Bisschops, R.H.C., & van der Grond, J. (2004). Probabilistic segmentation of white matter lesions in MR, imaging. NeuroImage, 21(3), 1037–1044.
3. Arthur, D., & Vassilvitskii, S. (2007). K-means++: the advantages of careful seeding. In Proceedings of the eighteenth annual ACM-SIAM Symposium on Discrete algorithms, SODA ’07 (pp. 1027–1035). Philadelphia: Society for Industrial and Applied Mathematics.
4. Barillot, C., Commowick, O., Guttmann, C., Styner, M., & Warfield, S. (2016). MS Segmentation challenge. Last accessed: 20 oct, 2016.
https://portal.fli-iam.irisa.fr/msseg-challenge/overview
.
5. Cardoso, M.J., Modat, M., Wolz, R., Melbourne, A., Cash, D., Rueckert, D., & Ourselin, S. (2015). Geodesic information flows: spatially-variant graphs and their application to segmentation and fusion. IEEE Transactions on Medical Imaging, 34(9), 1976–1988.
https://doi.org/10.1109/TMI.2015.2418298
.