Abstract
Abstract
Recently, the construction of Narain CFT from a certain class of quantum error correcting codes has been discovered. In particular, the spectral gap of Narain CFT corresponds to the binary distance of the code, not the genuine Hamming distance. In this paper, we show that the binary distance is identical to the so-called EPC distance of the boolean function uniquely associated with the quantum code. Therefore, seeking Narain CFT with large spectral gap can be addressed by getting a boolean function with high EPC distance. Furthermore, this problem can be undertaken by finding lower Peak-to-Average Power ratio (PAR) with respect to the binary truth table of the boolean function. Though this is neither sufficient nor necessary condition for high EPC distance, we construct some examples of relatively high EPC distances referring to the constructions for lower PAR. We also see that codes with high distance are related to induced graphs with low independence numbers.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献