Two types of series expansions valid at strong coupling

Author:

Edery ArielORCID

Abstract

Abstract It is known that perturbative expansions in powers of the coupling in quantum mechanics (QM) and quantum field theory (QFT) are asymptotic series. This can be useful at weak coupling but fails at strong coupling. In this work, we present two types of series expansions valid at strong coupling. We apply the series to a basic integral as well as a QM path integral containing a quadratic and quartic term with coupling constant λ. The first series is the usual asymptotic one, where the quartic interaction is expanded in powers of λ. The second series is an expansion of the quadratic part where the interaction is left alone. This yields an absolutely convergent series in inverse powers of λ valid at strong coupling. For the basic integral, we revisit the first series and identify what makes it diverge even though the original integral is finite. We fix the problem and obtain, remarkably, a series in powers of the coupling which is absolutely convergent and valid at strong coupling. We explain how this series avoids Dyson’s argument on convergence. We then consider the QM path integral (discretized with time interval divided into N equal segments). As before, the second series is absolutely convergent and we obtain analytical expressions in inverse powers of λ for the nth order terms by taking functional derivatives of generalized hypergeometric functions. The expressions are functions of N and we work them out explicitly up to third order. The general procedure has been implemented in a Mathematica program that generates the expressions at any order n. We present numerical results at strong coupling for different values of N starting at N = 2. The series matches the exact numerical value for a given N (up to a certain accuracy). The continuum is formally reached when N → ∞ but in practice this can be reached at small N.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3