Author:
Li Jinmian,Nomura Takaaki,Shimomura Takashi
Abstract
Abstract
We consider inelastic dark matter scenarios with dark photon mediator and a dark Higgs boson. The dark Higgs boson spontaneously breaks the gauge symmetry associated with the dark photon, and gives the mass to the dark photon and the mass difference to dark particles. Such a dark Higgs boson can decay into the dark particles and hence can be another source of the dark particles at collider experiments. We analyze the sensitivity to decays of the excited state into the dark matter and charged particles at the FASER 2 experiment in fermion and scalar inelastic dark matter scenarios. We consider two mass spectra as illustrating examples in which the excited state can be produced only through the decay of dark Higgs boson. We show that unprobed parameter region can be explored in fermion dark matter scenario for the illustrating mass spectra.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference52 articles.
1. Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [Erratum ibid. 652 (2021) C4] [arXiv:1807.06209] [INSPIRE].
2. M. Battaglieri et al., US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report, in U.S. Cosmic Visions: New Ideas in Dark Matter, College Park, U.S.A, March 23–25 2017 [arXiv:1707.04591] [INSPIRE].
3. D. Tucker-Smith and N. Weiner, Inelastic dark matter, Phys. Rev. D 64 (2001) 043502 [hep-ph/0101138] [INSPIRE].
4. D. Tucker-Smith and N. Weiner, The Status of inelastic dark matter, Phys. Rev. D 72 (2005) 063509 [hep-ph/0402065] [INSPIRE].
5. DAMA collaboration, First results from DAMA/LIBRA and the combined results with DAMA/NaI, Eur. Phys. J. C 56 (2008) 333 [arXiv:0804.2741] [INSPIRE].
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献