Author:
Argyres Philip C.,Martone Mario,Ray Michael
Abstract
Abstract
The Coulomb phase of a quantum field theory, when present, illuminates the analysis of its line operators and one-form symmetries. For 4d $$ \mathcal{N} $$
N
= 2 field theories the low energy physics of this phase is encoded in the special Kähler geometry of the moduli space of Coulomb vacua. We clarify how the information on the allowed line operator charges and one-form symmetries is encoded in the special Kähler structure. We point out the important difference between the lattice of charged states and the homology lattice of the abelian variety fibered over the moduli space, which, when principally polarized, is naturally identified with a choice of the lattice of mutually local line operators. This observation illuminates how the distinct S-duality orbits of global forms of $$ \mathcal{N} $$
N
= 4 theories are encoded geometrically.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献