Abstract
Abstract
The chiral magnetic effect with a fluctuating chiral imbalance is more realistic in the evolution of quark-gluon plasma, which reflects the random gluonic topological transition. Incorporating this dynamics, we calculate the chiral magnetic current in response to space-time dependent axial gauge potential and magnetic field in AdS/CFT correspondence. In contrast to conventional treatment of constant axial chemical potential, the response function here is the AVV three-point function of the $$ \mathcal{N} $$
N
= 4 super Yang-Mills at strong coupling. Through an iterative solution of the nonlinear equations of motion in Schwarzschild-AdS5 background, we are able to express the AVV function in terms of two Heun functions and prove its UV/IR finiteness, as expected for $$ \mathcal{N} $$
N
= 4 super Yang-Mills theory. We found that the dependence of the chiral magnetic current on a non-constant chiral imbalance is non-local, different from hydrodynamic approximation, and demonstrates the subtlety of the infrared limit discovered in field theoretic approach. We expect our results enrich the understanding of the phenomenology of the chiral magnetic effect in the context of relativistic heavy ion collisions.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference40 articles.
1. K. Fukushima, D.E. Kharzeev and H.J. Warringa, The chiral magnetic effect, Phys. Rev. D 78 (2008) 074033 [arXiv:0808.3382] [INSPIRE].
2. D.E. Kharzeev, L.D. McLerran and H.J. Warringa, The effects of topological charge change in heavy ion collisions: ‘event by event P and CP-violation’, Nucl. Phys. A 803 (2008) 227 [arXiv:0711.0950] [INSPIRE].
3. D.E. Kharzeev and H.J. Warringa, Chiral magnetic conductivity, Phys. Rev. D 80 (2009) 034028 [arXiv:0907.5007] [INSPIRE].
4. D.T. Son and P. Surowka, Hydrodynamics with triangle anomalies, Phys. Rev. Lett. 103 (2009) 191601 [arXiv:0906.5044] [INSPIRE].
5. STAR collaboration, Azimuthal charged-particle correlations and possible local strong parity violation, Phys. Rev. Lett. 103 (2009) 251601 [arXiv:0909.1739] [INSPIRE].
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献