On asymptotic behaviour in truncated conformal space approach

Author:

Konechny Anatoly,McAteer Dermot

Abstract

Abstract The Truncated conformal space approach (TCSA) is a numerical technique for finding finite size spectrum of Hamiltonians in quantum field theory described as perturbations of conformal field theories. The truncation errors of the method have been systematically studied near the UV fixed point (when the characteristic energy related to the coupling is less than the truncation cutoff) where a good theoretical understanding has been achieved. However numerically the method demonstrated a good agreement with other methods for much larger values of the coupling when the RG flow approaches a new fixed point in the infrared. In the present paper we investigate this regime for a number of boundary RG flows testing the leading exponent and truncation errors. We also study the flows beyond the first fixed point which have been observed numerically but yet lack a theoretical understanding. We show that while in some models such flows approximate reversed physical RG flows, in other models the spectrum approaches a stable regime that does not correspond to any local boundary condition. Furthermore we find that in general the flows beyond the first fixed point are very sensitive to modifications of the truncation scheme.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RG boundaries and Cardy’s variational ansatz for multiple perturbations;Journal of High Energy Physics;2023-11-02

2. Ising model in a boundary magnetic field with random discontinuities;Journal of Physics A: Mathematical and Theoretical;2022-10-28

3. Properties of RG interfaces for 2D boundary flows;Journal of High Energy Physics;2021-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3