Abstract
Abstract
We construct a scotogenic Majorana neutrino mass model in a gauged U(1)X extension of the standard model, where the mass of the gauge boson and the unbroken gauge symmetry, which leads to a stable dark matter (DM), can be achieved through the Stueckelberg mechanism. It is found that the simplest version of the extended model consists of the two inert-Higgs doublets and one vector-like singlet fermion. In addition to the Majorana neutrino mass, we study the lepton flavor violation (LFV) processes, such as ℓi → ℓjγ, ℓi → 3ℓj, μ − e conversion rate in nucleus, and muonium-antimuonium oscillation. We show that the sensitivities of μ → 3e and μ − e conversion rate designed in Mu3e and COMET/Mu2e experiments make both decays the most severe constraints on the μ → e LFV processes. It is found that τ → μγ and τ → 3μ can reach the designed significance level of Belle II. In addition to explaining the DM relic density, we also show that the DM-nucleon scattering cross section can satisfy the currently experimental limit of DM direct detection.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference34 articles.
1. E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].
2. Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [Erratum ibid. 652 (2021) C4] [arXiv:1807.06209] [INSPIRE].
3. MEG II collaboration, The design of the MEG II experiment, Eur. Phys. J. C 78 (2018) 380 [arXiv:1801.04688] [INSPIRE].
4. C.M. Perez and L. Vigani, Searching for the Muon Decay to Three Electrons with the Mu3e Experiment, Universe 7 (2021) 420 [INSPIRE].
5. COMET collaboration, COMET Phase-I Technical Design Report, PTEP 2020 (2020) 033C01 [arXiv:1812.09018] [INSPIRE].
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献