Author:
Neves M. J.,Okada Nobuchika,Okada Satomi
Abstract
Abstract
We present a minimal extension of the left-right symmetric model based on the gauge group SU(3)c× SU(2)L× SU(2)R× U(1)B−L× U(1)X, in which a vector-like fermion pair (ζL and ζR) charged under the U(1)B−L× U(1)X symmetry is introduced. Associated with the symmetry breaking of the gauge group SU(2)R× U(1)B−L× U(1)X down to the Standard Model (SM) hypercharge U(1)Y, Majorana masses for ζL,R are generated and the lightest mass eigenstate plays a role of the dark matter (DM) in our universe by its communication with the SM particles through a new neutral gauge boson “X”. We consider various phenomenological constraints of this DM scenario, such as the observed DM relic density, the LHC Run-2 constraints from the search for a narrow resonance, and the perturbativity of the gauge couplings below the Planck scale. Combining all constraints, we identify the allowed parameter region which turns out to be very narrow. A significant portion of the currently allowed parameter region will be tested by the High-Luminosity LHC experiments.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献