Compactifying 5d superconformal field theories to 3d

Author:

Sacchi Matteo,Sela Orr,Zafrir Gabi

Abstract

Abstract Building on recent progress in the study of compactifications of 6d (1, 0) superconformal field theories (SCFTs) on Riemann surfaces to 4d$$ \mathcal{N} $$ N = 1 theories, we initiate a systematic study of compactifications of 5d$$ \mathcal{N} $$ N = 1 SCFTs on Riemann surfaces to 3d$$ \mathcal{N} $$ N = 2 theories. Specifically, we consider the compactification of the so-called rank 1 Seiberg $$ {E}_{N_f+1} $$ E N f + 1 SCFTs on tori and tubes with flux in their global symmetry, and put the resulting 3d theories to various consistency checks. These include matching the (usually enhanced) IR symmetry of the 3d theories with the one expected from the compactification, given by the commutant of the flux in the global symmetry of the corresponding 5d SCFT, and identifying the spectrum of operators and conformal manifolds predicted by the 5d picture. As the models we examine are in three dimensions, we encounter novel elements that are not present in compactifications to four dimensions, notably Chern-Simons terms and monopole superpotentials, that play an important role in our construction. The methods used in this paper can also be used for the compactification of any other 5d SCFT that has a deformation leading to a 5d gauge theory.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dimensionally reducing generalized symmetries from (3+1)-dimensions;Journal of High Energy Physics;2024-07-11

2. 3d $$ \mathcal{N} $$ = 2 theories from M-theory on CY4 and IIB brane box;Journal of High Energy Physics;2024-05-06

3. Aspects of 4d supersymmetric dynamics and geometry;SciPost Physics Lecture Notes;2024-02-12

4. 5d to 3d compactifications and discrete anomalies;Journal of High Energy Physics;2023-10-30

5. S-confining gauge theories and supersymmetry enhancements;Journal of High Energy Physics;2023-08-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3