The scales of the infrared

Author:

Gómez César,Letschka Raoul,Zell Sebastian

Abstract

Abstract In theories with long-range forces like QED or perturbative gravity, loop corrections lead to vanishing amplitudes. There are two well-known procedures to address these infrared divergences: dressing of asymptotic states and inclusion of soft emission. Although both yield the same IR-finite rates, we point out that they are not equivalent since they encode different infrared scales. In particular, dressing states are independent of the resolution scale of radiation. Instead, they define radiative vacua in the von Neumann space. After a review of these concepts, the goal of this paper is to present a combined formalism that can simultaneously describe both dressing and radiation. This unified approach allows us to tackle the problem of quantum decoherence due to tracing over unresolved radiation. We obtain an IR-finite density matrix with non-vanishing off-diagonal elements and estimate how its purity depends on scattering kinematics and the resolution scale. Along the way, we comment on collinear divergences as well as the connection of large gauge transformations and dressing.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3