Improving heavy Dirac neutrino prospects at future hadron colliders using machine learning

Author:

Feng Jie,Li Mingqiu,Yan Qi-Shu,Zeng Yu-Pan,Zhang Hong-Hao,Zhang Yongchao,Zhao Zhijie

Abstract

Abstract In this work, by using the machine learning methods, we study the sensitivities of heavy pseudo-Dirac neutrino N in the inverse seesaw at the high-energy hadron colliders. The production process for the signal is pp → 3 + $$ {E}_T^{\mathrm{miss}} $$ E T miss , while the dominant background is ppWZ → 3 + $$ {E}_T^{\mathrm{miss}} $$ E T miss . We use either the Multi-Layer Perceptron or the Boosted Decision Tree with Gradient Boosting to analyse the kinematic observables and optimize the discrimination of background and signal events. It is found that the reconstructed Z boson mass and heavy neutrino mass from the charged leptons and missing transverse energy play crucial roles in separating the signal from backgrounds. The prospects of heavy-light neutrino mixing |VℓN|2 (with = e, μ) are estimated by using machine learning at the hadron colliders with $$ \sqrt{s} $$ s = 14 TeV, 27 TeV, and 100 TeV, and it is found that |VℓN|2 can be improved up to $$ \mathcal{O} $$ O (106) for heavy neutrino mass mN = 100 GeV and $$ \mathcal{O} $$ O (104) for mN = 1 TeV.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference131 articles.

1. P. Minkowski, μ → eγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

2. R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Nonconservation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].

3. T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE].

4. M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].

5. S.L. Glashow, The Future of Elementary Particle Physics, NATO Sci. Ser. B 61 (1980) 687 [INSPIRE].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3