Author:
Baur Alexander,Nilles Hans Peter,Ramos-Sánchez Saúl,Trautner Andreas,Vaudrevange Patrick K. S.
Abstract
Abstract
Eclectic flavor groups arising from string compactifications combine the power of modular and traditional flavor symmetries to address the flavor puzzle. This top-down scheme determines the representations and modular weights of all matter fields, imposing strict constraints on the structure of the effective potential, which result in controlled corrections. We study the lepton and quark flavor phenomenology of an explicit, potentially realistic example model based on a 𝕋6/ℤ3× ℤ3 orbifold compactification of the heterotic string that gives rise to an Ω(2) eclectic flavor symmetry. We find that the interplay of flavon alignment and the localization of the modulus in the vicinity of a symmetry-enhanced point leads to naturally protected fermion mass hierarchies, favoring normal-ordered neutrino masses arising from a see-saw mechanism. We show that our model can reproduce all observables in the lepton sector with a small number of parameters and deliver predictions for so far undetermined neutrino observables. Furthermore, we extend the fit to quarks and find that Kähler corrections are instrumental in obtaining a successful simultaneous fit to the quark and lepton sectors.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献